
1

Bradford G. Van Treuren

IEEE P2654™ System Test
Access Management (STAM)
Update
International Test Access, Automation & Adoption (TAAA) Workshop

2

“This presentation solely represents the views of
this Working Group and does not necessarily

represent the position of either the IEEE or the
IEEE Standards Association”

3

Full roster may be found at: http://sjtag.org/members

Active Members (13)

Member Office Affiliation

Ian M. McIntosh Chair Leonardo

Brian Erickson Vice-Chair JTAG Technologies

Louis Ungar Secretary A.T.E. Solutions

Eric Cormack Editor DFT Solutions

Terry Duepner National Instruments

Heiko Ehrenberg GOEPEL Electronics

Peter Horwood Digital Development Consultants Ltd.

Bill Huynh Marvell Inc.

Joel Irby AMD

Richard Pistor Curtiss-Wright

Jon Stewart Dell

Bradford G. Van Treuren VT Enterprises Consulting Services

Carl Walker Cisco Systems

We meet weekly on Mondays at 11:00 ET.

4

Difference Between P1687.1 and P2654

DUT

Instrumented

Assembly

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

Bridging

Assembly

Instrumented

Device
P2654

Network

P2654

Network
Instrumented

Device

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

A
s
s
e
m

b
ly

 I
n
te

rf
a
c
e

Instruments

1687

network

Mission

circuitry

SI

Transform

Engine

D
e
v
ic

e
 P

in

 I
n
te

rf
a
c
e
 /
 C

o
n
tr

o
lle

r

Functional

Registers

DUT

DI

Functional

Registers

P1687.1

P2654

Specific right hand

side Target

(IEEE 1687

elements

describable with

ICL and PDL)

Unlimited

right hand

side Target

varieties

5

 P2654 Standard for System
Test Access Management
(STAM) to Enable Use of Sub-
System Test Capabilities at
Higher Architectural Levels

 Models the behavior of the HW
system through hierarchical
and recursive transformation
procedures for each level

 STAM SW model implements
transform procedures via
Request/Response messages
between HW modeled entities

Software model of HW state change behavior at interface

P2654 Role in System JTAG (SJTAG)

STAM

M
o
d
e
le

d
 i
n
 S

T
A

M
 S

W

6

 Network represents the behavior of
specific path logic used to
communicate with a Target entity

 Each Target has a specific
grammar of operations which may
be performed by the Interface
between Target and Network (e.g.,
I2CWrite, I2CRead)

 Remaps Target context sensitive
grammar of interfaces through
Request/Response messages to
the higher level Network model
until exposed at the Network
Interface

P2654 Abstract Perspective of a System

Interface

Network

TargetTargetTarget

S
im

p
le

 V
ie

w
 o

f
H

W

A
b
s
tr

a
c
t
M

o
d
e
l

Grammar of

Operations

Interface

Network

TargetTargetTarget
H

ie
ra

rc
h

ic
a

l
a

n
d

R
e

c
u

rs
iv

e
 V

ie
w

 o
f
H

W

A
b

s
tr

a
c
t
M

o
d

e
l R

E

Q

U

E

S

T

R

E

S

P

O

N

S

E

7

 Top Level Interface makes
Request to STAM Layer to apply
data to the device driver of the
Traditional Infrastructure for that
HW path

 The data captured from the driver
is packaged up in a response
message sent back to the Top
Level SW Interface

 The message data is then reverse
transformed into context
appropriate messages to the
Target tooling for
processing/diagnosis

P2654 Abstract Perspective of a System

Interface

Network

TargetTargetTarget

Interface

Network

TargetTargetTarget

S
im

p
le

 V
ie

w
 o

f
H

W

A
b
s
tr

a
c
t
M

o
d
e
l

H
ie

ra
rc

h
ic

a
l
a

n
d

R
e

c
u

rs
iv

e
 V

ie
w

 o
f
H

W

A
b

s
tr

a
c
t
M

o
d

e
l R

E

Q

U

E

S

T

R

E

S

P

O

N

S

E

8

 HW architecture is modeled as
a hierarchical tree with STAM
Layer as the root

 Target nodes represent
Register behaviors with context
appropriate interface grammar
messages

 Networks transforms the
message content in requests to
a set of grammar messages to
the next level returning a
response

 Adapters transform non-P2654
compliant messages from
external sources to P2654
compliant messages

P2654 STAM Layer SW Model

Top Level inside STAM Layer
(Where SW model meets HW)

JTAG_TOP I2C_TOP
Trad IF to

Drivers

To HW

Traditional

Infrastructure

JTAG

Chain
(Network)

JTAG

Device U1
(Target)

JTAG

BSCAN2 U2

(Network)

JTAG/1687

Device U4
(Adapter)

1687 EDA

Tool
(Retargeter)

I2C Bus
(Network)

I2C Device

U5 (Target)

I2C/P1687.1

Device U6

(Adapter)

P1687.1

EDA Tool
(Retargeter)

JTAG

Device U3
(Target)

9

 Application SW may desire to
inject vectors somewhere other
than to a Target or to a specific
Target

 Transformations will have to
perform a simplified retargeter
operation by managing path
connections through their branch

 A set of transformations (transfer
procedures) need to be defined
for each request/response at
each interface

 A set of injection commands
must be defined for each level
that injects vectors/data

P2654 STAM Layer SW Model

Top Level inside STAM Layer
(Where SW model meets HW)

JTAG_TOP I2C_TOP
Trad IF to

Drivers

To HW

Traditional

Infrastructure

JTAG

Chain
(Network)

JTAG

Device U1
(Target)

JTAG

BSCAN2 U2

(Network)

JTAG/1687

Device U4
(Adapter)

1687 EDA

Tool
(Retargeter)

I2C Bus
(Network)

I2C Device

U5 (Target)

I2C/P1687.1

Device U6

(Adapter)

P1687.1

EDA Tool
(Retargeter)

JTAG

Device U3
(Target)

Inject

vectors

here

Inject

vectors

here

1

0

 Abstracts the connections between Client/Host

 Standardizes the communications interface

 Routes messages between Client/Host and Host/Client

 Relocatable Vector Format (RVF) is agnostic to context

 Buffer message groups of same context

 Not transformation mechanism

 Not router to handler callback (Client/Host Interfaces are)

 Not synchronizing agent for model (transform vs. retarget method)

Interface between Model Nodes (AccessInterface)

Simplified AccessInterface and Node Diagram

H
O

S
T

IN
T

E
R

F
A

C
E

C
L
IE

N
T

IN
T

E
R

F
A

C
E

T
R

A
N

S
F

O
R

M

E
N

G
IN

E

(Model Node)

H
O

S
T

IN
T

E
R

F
A

C
E

C
L
IE

N
T

IN
T

E
R

F
A

C
E

T
R

A
N

S
F

O
R

M

E
N

G
IN

E

(Model Node)

REQUEST

RESPONSE

ACCESS

INTERFACE

(edges of graph)

Deliver <= Route <= Queue <= Request

Response => Queue => Route => Deliver

1

1

Model Node Interfaces

Model

Node

Transformation

Strategy

Injection

Node

Model

Node

Injection

Node

Model

Node

Model

Node

Debug

Strategy

Client/Host AccessInterface

Host/Client AccessInterface TestInjectionInterface

Transformation

Interface

Debug

Interface

Injection

Strategy

Injection Interface

o o o o o o Clients

Host

1

2

 Leverages protobuffer
programming language
to support model
language and C/C++

 Direct call to callback
functions from
TransformStrategy

 Service functions from
protoc compile in C or
C++ code

 SWIG generated or hand
crafted to adapt model
code to C/C++ callbacks

C/C++ Library Extension Strategy

HOST INTERFACE

TRANSFORMATION

ENGINE

CLIENT INTERFACE

TRANSFORM

STRATEGY

(CALLBACK

INTERFACE

FAÇADE/

WRAPPER)

handleRequest

handleResponse

sendRequest

sendResponse

getStatus

getError

apply

E
x

te
n

s
io

n

T
ra

n
s

fo
rm

S
tr

a
te

g
y

T
ra

n
s

fo
rm

A
d

a
p

te
r

SWIG + Callback

Library

Node language

decoders from

message to callback

T
ra

n
s
fo

rm
a

ti
o

n

In
te

rf
a

c
e

1

3

Description Entities

Entity Category Description

ROOT STAM Layer A model node' that represents the top node of a tree where CONTROLLER nodes are

coordinated as a single unit. The children represent a list of dissimilar sub-trees, as

CONTROLLERS, coordinated for a test.

CONTROLLER STAM Layer A model node' that represents the top node of a tree where event messages are folded into

hardware device driver calls. The children represent a list of similar sub-trees coordinated

for a test and controlled by the CONTROLLER.

CHAIN Network A hierarchical node' that represents a chained hierarchy. This node models a structure of

multiple segments as a hierarchy of sibling children nodes of the same order. Cardinality

order of the modules in the list is important. Modules are specified with the children

keyword.

LINKER Network A hierarchical node' that represents a selectable chained hierarchy. This node models a

structure of multiple segments as a hierarchy of sibling children nodes that may be present

or missing from the path. Order of the modules in the list is important. Modules are

specified with the children keyword.

CUSTOM Network/

Target

A model node' that represents the customizable node of a tree where none of the primitive

node types describe the behavior of the node. The children may represent a list of

dissimilar sub-trees coordinated for a test.

INSTANCE Target A leaf node' that represents the instantiation of a module/branch at the point of insertion (as

for any other child nodes).

MODELPOINT Target A leaf node' that represents a translator between the software model and external tools or

protocol formats. This node references the strategy to be used to bridge the tooling with

the model tree.

REGISTER Target A leaf node' that represents the 1687 or JTAG TDR register modeling node.

1

4

Protobuf RVF
Encapsulation Model Example

RVF.proto
syntax = "proto3";

package RVF;

message RVFMessage {

 uint32 UID = 1;

 enum RVFType {

 ERROR = 0;

 STATUS = 1;

 REQUEST = 2;

 RESPONSE = 3;

 }

 RVFType rvf_type = 2;

 string metaname = 3;

 repeated bytes serialized= 4;

}

 AccessInterface messages
defined as separate proto buffer
messages in .proto file for entity

 Proto message name as
metaname field used to select
proper callback wrapped in
RVFMessage wrapper

 Message treated as raw data
encapsulated as a “bytes” type

 RVFMessage as interface to
Request and Response
handlers

1

5

Protobuf RVF
Encapsulation Model Example

SCAN.proto
syntax = "proto3";
Import “IntBV.proto”;
package RVF;

Message SU{
 uint32 UID = 1;
 IntBV si_vector = 2;
}

Message CS{
 uint32 UID = 1;
 IntBV safe_vector = 2;
 IntBV so_vector = 3;
}

Message CSU{
 uint32 UID = 1;
 IntBV si_vector = 2;
 IntBV so_vector = 3;
}

 Specialized messages for
context around Model
Node

 Required fields used by
software administration of
message routing (e.g.,
UID, command)

 Context messages
serialized/deserialized to
pack into carrier message

1

6

Q&A

