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Abstract— The industry is moving forward with non-TAP, 

chip-level interfaces driving IEEE 1687-2014 networks. Recent 

literature not only describes such interfaces, like I2C and IEEE 

1149.7 variants, but also demonstrates that such interfaces to 

IEEE 1687 are already proven in silicon. Common to those 

implementations is the need for “private” extensions of IEEE 1687 

to make it support non-TAP interfaces. The goal of IEEE P1687.1 

is to directly support non-TAP interfaces. In this work, we 

summarize the thought progression from IEEE 1687’s data 

register callbacks to IEEE P1687.1’s transfer function, which 

allows alignment with IEEE P2654, and possibly IEEE P1687.2. 
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I. INTRODUCTION 

The IEEE 1687-2014 standard [1], also known as IJTAG, 
enjoys a very fast adoption rate in the semiconductor industry. 
This speed may be due to IJTAG builds on other established 
standards like IEEE 1500-2005 [2] and IEEE 1149.1-2001 [3], 
allowing a risk-free adoption of the software side of IJTAG, 
while keeping the earlier hardware implementation as a 
backup. Hardware modeled according to these standards are, 
by construction, compliant with IJTAG. This is in particular 
true for the 1149.1 compliant TAP controller, which is one of 
the most common access points to the inside of the design. The 
IJTAG standard includes specific solutions for the description 
and easy integration of the TAP controller as the interface 
between the device IOs and the IJTAG network it hosts.  

On the other hand, the IJTAG standard does not provide 
the same level of descriptive power or integration ease-of-use 
for other established device IO (industry) standards, like Inter-
Integrated Circuit (I2C) [4] or Serial Peripheral Interface (SPI), 
see e.g., [5]. This lack of support by the standard has not 
stopped users of IJTAG expanding the reach of their IJTAG-
based implementations. Recent papers [6]-[9] describe 
numerous IJTAG-based solutions and implementations in 
silicon of non-TAP interfaces, including I2C and IEEE 1149.7-
like two-pin serial interfaces driving IJTAG networks.  

Typically, these solutions bend or expand the IJTAG 
standard to support the user’s need. IEEE P1687.1 [10] aims 
at filling this gap in IJTAG by standardizing a method to 
generically describe device IO interfaces, TAP and non-TAP 
alike.  

The remainder of this paper is structured as follows. The 
next section introduces the main concepts of IEEE P1687.1 
and draws some comparisons to 1687. We will be looking at 
how device IOs and device interfaces are describable, 
following along some of the evolution of thinking of the IEEE 
P1687.1 working group. Section III illustrates in more detail 
options and difficulties of an I2C modeling in IJTAG. Section 
IV develops the rudimentary non-TAP concepts of IJTAG into 
the generic solution needed to describe a multitude of device 
interfaces. This generalization is captured by Interface-to-
Interface Transfer Functions, abstracting away the entire body 
of the non-TAP interface module into software. Section V 
illustrates two implementations examples, one of which is the 
well-known Verilog Direct Programming Interface (DPI) 
[11], which could serve as a template for IEEE P1687.1. 
Thereafter, we summarize the paper and provide conclusions. 

II. INTRODUCING IEEE P1687.1 

We must state that the IEEE P1687.1 standard is a work-
in-progress. No syntax or semantics has been defined. Also, 
the concepts we are describing here and in the following are 
currently being discussed and are not final. Nonetheless, the 
understanding of the problem and solution space at the core of 
P1687.1 focuses more and more on what is described in this 
paper.  

As mentioned in the introduction, P1687.1 shall enable a 
user of 1687 to choose a device IO interface that is not an 
1149.1 compliant TAP controller. The beforementioned I2C is 
one example. P1687.1, just as 1687, will be a descriptive 
standard, not a prescriptive one. This means it will not contain 
prescriptions how one or the other existing device IO interface 
needs to be modeled. Instead, a generic description must be 
found that enables users to describe a wide variety of device 
IO interfaces, including the currently most common interfaces. 



 

The latter could be provided in the P1687.1 document as 
examples in the non-normative section of this future standard. 

 

Figure 1: General depiction of the IEEE P1687.1 task 

The general problem P1687.1 solves is shown in Figure 1. 
It is assumed that the device contains a 1687 compliant set of 
instruments, connected to a 1687 compliant network, which is 
hosted by an internal, 1149.1 compliant, TAP controller. On 
the other end of the device, there is the non-TAP Device Pin 
Interface & Controller (DPIC). Both sides are bridged by a 
“transformation engine” module. This module translates in 
both directions between the device’s IO data and control 
protocol and the data and control protocol operating the TAP 
controller. Valid variations of this picture may have the TAP 
controller being part of the transformation engine, i.e. the 
transformation engine module directly hosts the IJTAG 
network. The task of P1687.1 is finding a way to describe this 
transformation engine module. 

A. IEEE 1687 Callbacks and Access Links 

Early on the IEEE P1687.1 working group saw that many 
of the current interfaces use or can use a (portal) register that 
serves as the physical data transfer method, see Figure 2. If a 
DPIC could write data to and read data from this portal 
register, then the transformation engine only needs to interface 
between this register and the TAP controller. This was 
described in an embedded tutorial at ETS 2019 [6]. An 
evolution step forward was outlined in the introduction 
sections of [7], presented at ITC 2020.  

 

Figure 2: Solution through Portal Registers 

Initially, the thinking was guided by the idea to expand the 
IJTAG concept of callback and access link. An IJTAG 
callback is a reference to an iProc, written in PDL (level 0 or 
1) and attached to a data register. This iProc is called whenever 
the IJTAG retargeter encounters this data register, hence there 
can be an iProc that is called when there is a read operation 
from this data register, and another iProc when writing to the 
data register is needed. The 1687 standard sets no limits on 
these iProcs. For example, they can read and write to any other 

ICL register or port, can be cascaded, iMerged etc. In the most 
general case, these data register callbacks are nearly 
impossible to implement in an EDA tool. P1687.1 plans not 
use such data register callbacks.  

1687 provides two types of access links. One, fully 
developed, for integrating the TAP controller, and a ‘generic’ 
one. The latter is hardly developed in 1687, and essentially 
unusable. Still, the idea of an access link is sound and was 
considered expandable for the needs of P1687.1. Through this 
mechanism, one can attach a protocol to an ICL instance, 
without actually describing much of the body of the ICL 
module. Figure 3 (top) depicts a simple access link example, 
as provided in the 1687 standard, with Figure 3 (middle) being 
the matching ICL code.  

 

Figure 3: IEEE 1687 AccessLink Example 

One observation how 1687 defines the access link is that 
is no longer matches the (RTL) design implementation. Note 
that in Figure 3 (top) the TDI, TMS, TCK, and TDO ports are 
all parts of the TAP (AccessLink) ICL ‘instance’. In reality, 
there is no such instance, as the TAP module instance in the 
design has its own pins with its own pin names, connected to 
the device IO with its own port names, as shown in Figure 3 
(bottom). This description discrepancy between ICL and the 
design is usually not a problem but might become an obstacle 
when one needs to concatenate multiple such transformation 
engines.  

B. IEEE P2654 and IEEE P1687.2 Crossovers 

This concatenation may be an essential aspect of IEEE 
P2654 [12], and possibly P1687.2 [13][14], hence the access 
link description should be restricted to the design module 
boundaries. 

The task in P2654 is to bring, for example, multiple 
devices into one description model at the system level, so that 
(IJTAG) patterns can be generated and applied across devices 
and across a variety of device IO interfaces.  
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P1687.2 is an IJTAG derivative that addresses analog ports 
and operate analog instruments. For example, P1687.2 might 
need to translate a voltage level at the input to another voltage 
level at the output of the transformation engine. In P1687.2 it 
is possible that analog properties undergo multiple 
transformations between the analog instrument and the device 
IO for example, see Figure 4 

 

Figure 4: Concatenation of transformation modules 

It becomes clear that all three standards look at different 
aspects of the very same problem: There’s a design entity that 
transforms input data to output data and vice versa but is too 
complex to be described in any reasonable extension of ICL. 
On the other side, it is very clear what this transformation 
needs to do. One can easily sketch out how one set of data 
needs be transformed into the other set of data (in either 
direction), i.e. one can easily write an algorithm for this. 

C. Transfer Function 

We finally arrived at the understanding that “all” we need 
to define is a description method for this algorithm in a way 
that is useful for all three standards.  

It seems that only two algorithms are needed, one for 
taking the data at all the inputs of the module and compute the 
output data, and one for taking the data at the all the outputs 
and compute the input data. In engineering such a method is 
referred to as a Transfer Function, a mathematical concept. A 
transfer function models the output response of an electronic 
component for a range of possible input stimuli. Filters are 
typical implementations to transfer functions.  

In the simplest case the transfer function for P1687.1 is 
strictly a combinational function from n binary-valued module 
inputs to m binary-valued module outputs. It is attached to an 
ICL instance by means of an AccessLink-like construct and 
executed through the software engineering method of 
callbacks by the EDA software. More on this in Section IV 
and Section V. 

III. I2C MODELING WITH IEEE 1687 

The I²C interface is the epitome of the low-level digital 
host interface for small and medium chips, attached to 
embedded microcontrollers. It was presented by Philips in 
1982 and soon became popular in the industry.  

A. I²C and SPI Basics: Addressed Access Schemes 

Like other such interfaces, e.g. the Serial Peripheral 
Interface (SPI) communication happens bit-serially on very 
few wires. I²C uses two wires: one for clock and one for 
bidirectional data. The original specification only defines 
transactions composed from two elements as shown in Figure 
5a and Figure 5b:  

1) An address byte selecting one of many slave devices and 

determining the data direction of the second element. 

2) One or more data bytes, either read or write direction 

Around the bytes there are few more clever details 
(start/stop conditions, negative acknowledge, etc.) which all 
contributed to the popularity of the interface but in the context 
of this paper only the data transfer model is the focus.  

Of course, accessing always all bits in a device is not 
overly flexible. Most devices therefore implement an internal 
address scheme. The first data byte as per the above definition 
becomes a device internal register address (not to be confused 
with the first element, which was a device address on the bus), 
followed by the payload data. A generic write access hence 
consists of three bytes: the device address, the register address, 
followed by the write payload data. See Figure 5c. 

Unfortunately, the data direction cannot change within a 
transaction. Remember: the first byte contains the direction bit 
together with the device address. Hence, a read access 
following this scheme needs to consist of two transactions as 
shown in Figure 5d. 

1) Write the register address 

2) Read the payload data 

The fundamental organization of addressed registers fits 
very well with the data model of microprocessors that access 
memory locations on a map. As no surprise there are variants 
of the protocol using 2 bytes for addressing. Also, there is no 
hard need to restrict the payload data to 8-bit chunks. 

In contrast to I²C, SPI does not operate a bidirectional data 
line but features dedicated input and output data pins. Also, no 
bus addressing happens. Instead, a chip select signal chooses 
the slave to respond to the master. However, the underlying 
data model of the SPI may be just the same: Addressed register 
locations, each 8-bit wide.  
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Once a chip features such a host interface for the various 

registers controlling its functions (write) and presenting 

acquired data (read), it is quite natural to use it as Test Access 

Port (TAP) too. Hence there is no appetite for such small to 

medium size chips to implement another TAP like the one 

defined by 1149.1.  

The concept of accessing a bit by the register address and the 

position within the register is sufficiently different to the 

1149.1 idea of locating a bit by its position on a scan chain. 

Handling long and reconfigurable scan chains is fine in a test-

only environment where patterns are pre-computed offline. 

An application style access to test registers is simpler and 

more attractive. 

Also, it is more economical compared to the scan approach of 

1149.1. A boundary scan register or the Test Data Register 

(TDR) as per the 1687 standard requires an extra flip-flop per 

control bit. The overhead of I²C and other addressed schemes 

is the de-serializer. It grows from a base line determined by 

the width of the data word only logarithmically with the 

number of bits. Let n be the number of bits and w the width 

of the data word (=8 for I²C and a set SPI configuration) then 

the number of required flip-flops is as follows. 

• Scan based flop count: n + n = 2n 

• Addressed flop count: n + log2(n/w) + w 

One might say this is no longer relevant in the age of single 
digit nanometer technologies, but this is just one end of the 
spectrum. Mixed-signal Big-A/little-d devices, which only 
feature 5V logic (= 0.6µm) for cost reasons, are ubiquitous. A 
very interesting example was described in [15]. It showed a 
single pin implementation with clock and data on the same 
line, again together with an addressed access scheme. 

It is fair to say that for small and medium chips there will 
always be a too high barrier for an 1149.1 TAP and scan chains 
to be accepted. Nevertheless, the design and test engineers of 
these chips equally want to benefit from the principles of 
IJTAG. 

B. Approaches to Use I²C and IJTAG Together? 

Even though IEEE 1687 primarily describes scan-based 
access networks attached to an 1149.1 TAP it offers a few 
options and pointers to alternatives. 

 AccessLink 

The will to support other external interfaces can be seen 
from the AccessLink instruction in ICL. It specifies the TAP 
which is connected to the scan-based access network. 
However, only one single type STD_1149_1_2001 is defined. 
IEEE 1687 simply points to the “user community” to define 
other interfaces. This is the purpose of P1687.1.  

Hardware Portal Solutions 

One of the challenges with any I²C implementation is that 
the access network cannot necessarily be described in a cycle 
accurate manner, as is the case with scan-based interfaces. 
There are three popular implementations: 

a) Fully asynchronous operation driven by the I²C clock, 

which after deserialization also forwards the payload 

data to/from the register. 

b) Asynchronous deserialization of the I²C signals. The 

complete transaction is then synchronized with an 

internal clock, which also forwards the payload data 

to/from the register. 

c) Oversampling of the I²C signals with a chip-internal 

clock, which processes the complete transfer in a 

synchronous system.  

Only option a) represents cycle accurate behavior, 
controlled by the I²C clock, for which a state machine could 
be described like the 1149.1 TAP. The other two 
implementations run on an internal clock. 

 

Figure 6: Portal Registers connecting I²C to IJTAG scan chain of “islands” 

In [16] and [17] a direct mapping of an IJTAG scan access 
network to a portal register is described. As shown in Figure 
6, the scan network is made up of so called “test and trim 
islands”, each featuring a segment insertion bit (SIB) and a 
uniform TDR. The portal IJTAG TAP controller services a 
range of device addresses and maps them to the islands. An 
I²C write transaction is translated by the portal engine to a 
sequence of transactions of the IJTAG scan network, opening 
the respective SIB and writing/reading the payload data. 

 

Figure 7: Island architecture with addressed register array 

The interesting element of this solution is that it exploits 

an option which was already foreseen by the 1687 standard: 

Addressable DataRegisters. As shown in Figure 7 the address 

for selecting the DataRegister comes from a ScanRegister. 

Also, the data source and the destination of the DataRegister 

is a ScanRegister. Hence it replicates the mechanism of the I²C 

interface itself: A serializer/deserializer followed by parallel 

read/write access. Compatibility is achieved by selecting the 

DataRegister 8 bits wide and allocating 16 addresses (4-bit 
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addressing) for each island. The IJTAG network is not 

advertised to the outside world (no ICL required).  

Callback Registers 

Another alternative access mechanism foreseen in the 

1687 standard is DataRegisters with an associated “callback”. 

For these registers no description of an access network is 

required. The standard states: “The callback register exists 

outside the logical connectivity described in ICL and instead 

relies on prewritten PDL procedures”. This mechanism avoids 

all complications introduced by chip-internal clocking (see 

discussion on I²C implementations above).  

The authors of [9] have exploited this concept. An iWrite 
or an iRead command to the DataRegister in the device is 
triggering the callback, which creates the bitstream of the 
transaction at the chip pins and hence can be mapped directly 
to the ATE.  

The drawback, which is usually associated with the use of 
PDL is that it describes the access mechanism only in one 
direction, the direction of retargeting. Implementers and tool 
writers may find it necessary to know the exact mapping of 
bits between original and retargeted PDL, e.g. for updating the 
original PDL if changes are done to the PDL and test pattern 
on the ATE. 

Another problem is the handling of registers and bitfields 
longer than 8 bits, which is the limit for an I²C atomic access. 
Imagine a 12-bit DAC whose controlling bitfield unavoidably 
stretches 2 I²C registers. If only the LSB needs changing, will 
all 12 bits be written (2 I²C transactions) or just what is 
changing (1 transaction)? Or, what happens if a carry-over 
from one register to the other happens such that both need 
changing? Which one is written first? 

These examples show some of the limits of the existing 
callback definition in the 1687 standard. 

IV. MODELING NON-TAP INTERFACE WITH  

IEEE P1687.1 

As mentioned in Section II above, the essential 
contribution planned for P1687.1 is to formalize the 
mechanism to mate a 1687 network to a device interface other 
than an 1149.1 TAP.  Also as noted above, the primary device 
interface candidates like I2C and SPI are often utilized as the 
conduit to exchange data with a bank of addressable data 
registers.  The alternate mechanism of using callback routines 
to communicate with such registers became the inspiration for 
the technical solution currently favored by the P1687.1 
Working Group. 

A. Expanding on the Callback DataRegister Notion 

A Callback DataRegister is said to be disembodied since 
its hardware connectivity is not described in ICL. Rather, its 
definition includes one or two callback procedures, 
WriteCallback and ReadCallback, which the retargeter 
summarily invokes when it sees this register referenced in the 
PDL test that is being retargeted.  This approach is useful for 
handling cases with complex connectivity which might prove 
too challenging for a retargeter to solve, or for cases where the 
IP provider wishes to keep the details of the connectivity and 
network hidden from the user.  Both of those reasons apply to 
the situation at hand: retargeting through the circuitry between 
the edge of the 1687 network and a non-TAP device interface. 

B. Viewing DPIC as a Callback DataRegister 

Figure 8 shows an abstraction of the region of interest for 
P1687.1: the circuitry between the (non-TAP) device interface 
pins and the edge of the 1687 network.  That edge consists of 
two types of interfaces: a ScanInterface (defined in 1687) and 
a DataInterface (new in P1687.1 but built entirely from 
original 1687 elements). 

Though it is conceivable that the cloud of circuitry 
between the DPIC pins and those interfaces could be described 
in ICL, writing that ICL might be a challenging or undesirable 
task. The DPIC may contain clock generators, data FIFOs, 
retimers, and other structures that might confound a retargeter.  
The DPIC could also contain proprietary features that the 
vendor may not wish to share.  Most importantly, though, none 
of that high-effort ICL is even necessary: all the details can be 
abstracted away by simply viewing the entire DPIC in the 
same way as a Callback DataRegister.  Specifically, rather 
than describing the hardware, the ICL for the DPIC module 
could simply point to callback procedures which would be 
invoked when the retargeter encountered any of the interfaces. 

This trick allows the DPIC creator to capture the behavior 
of the circuitry rather than try to convey its details to a 
retargeter, just as is done for the 1687 Callback DataRegister.  
There are, of course, many details of the syntax and semantics 
involved in documenting a callback for a DPIC; those 
constitute much of the work by the P1687.1 team and are 
beyond the scope of this paper.  Suffice it to say that there will 
be a mechanism (ideally AccessLink) for the retargeter to 
recognize when and how to invoke a DPIC callback. 
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Figure 8: DPIC connection to 1687 network 

C. Viewing a callback procedure as a macro expansion 

Taking a similarly abstract view of the operation of a 
callback procedure during retargeting leads to the simple 
conclusion: the contents of a callback can be thought of as a 
macro (i.e. a pre-defined snippet of PDL code) which is 
expanded in place where the original PDL test made a 
reference to the object whose ICL points to a callback 
procedure (e.g. a DataRegister in IEEE 1687, or a DPIC in 
P1687.1).   

The author of the callback procedure is effectively 
stepping in to tell the retargeter exactly what to do, whether 
that means selecting a particular data path from several 
choices, setting up a specific set of values to enable 
communication, or even manipulating the data through 



 

complicated circuitry (e.g. going through an adder by setting 
the other operand to zero, calculating parity bits to augment 
the payload, dividing the data into multiple words to be sent 
sequentially, etc.). The callback relieves the retargeter from 
the burden of figuring out how to move data.  Of course, this 
means that the author accepts that burden, but in the case of 
modeling the DPIC behavior, the author will likely be the 
designer of the DPIC and thus well qualified. 

D. Beyond PDL: Specifying Transactions at the DPIC 

The original 1687 standard dictates that callbacks be 
written in PDL, which makes perfect sense given this view of 
a callback as a macro to be expanded in-line with the source 
PDL being retargeted.  However, in the broader context being 
embraced by P1687.1, and for extension into P2654, this 
restriction to PDL becomes not just awkward, but limiting: 
PDL enables just primitive bit-banging of pins, whereas most 
DPICs come with meaningful protocols that are often codified 
in high-level application programming interface (API) calls. 

The logical step to resolve this limitation is to remove the 
restriction of writing DPIC callback procedures in only PDL.  
Introducing language flexibility at the callback level will allow 
non-TAP devices to be exercised by the software which is 
native to the embedded system in which the devices are used.  
For example, the result from a DPIC callback for an I2C 
interface might look like a sequence of  “write_i2c(w_data)” 
and “read_i2c(r_data)” statements, which is far more useful 
than a (much longer) sequence of “iWrite SCK 0b0; iApply; 
iWrite SDA 0b0; iApply; iWrite SCK 0b1; iApply; …” 
commands. 

As simple as that sounds, however, there are many details 
to manage: language compatibility across devices from 
different vendors in the same system, standard data types, 
neutral data exchange formats, consistent language and 
compiler versions, and even low-level details like endianness 
and byte ordering.  The final section of this paper will show a 
working example which resolves those issues.  

E. Mapping Payload Information 

Independent of the language details, a callback procedure 
has two types of content: static operations which sensitize data 
paths and/or walk-through state machines, and symbolic 
operations which manipulate the data payload itself.  Tracking 
that payload information through the various retargeting and 
transformation steps is essential for debugging and diagnosis 
of failures, so special steps may need to be taken to facilitate 
these tasks. 

The most direct method to explicitly track the data payload 
is to insert comments into the retargeted test whenever a piece 
of data has been manipulated.  In the context of a DataRegister 
callback done entirely in PDL, this can take the form of a PDL 
iNote command that will be persevered in the retargeted 
output.  For a DPIC callback, particularly if it is written in a 
different language than PDL as described above, some 
equivalent mechanism will need to be provided (e.g. special 
comment annotations, extra procedure calls which can serve 
as hooks for debugging, etc.). 

F. Generalizing: Interface-to-Interface Transfer Functions 

In light of the previous two abstractions (using pre-coded 
macros to represent circuit behavior instead of using a 
hardware connectivity description, and flexibly using 
programming languages to implement callback procedures to 

replace retargeting), it became clear to the P1687.1 and P2654 
Working Groups that there could be a general alignment 
across the different scopes of those two standardization 
efforts.  This alignment (which we intend to guide the 
development of both standards) is built around two key pillars: 
interfaces and transfer functions. 

Interfaces 

Though it wasn’t originally conceived of in 1687 in this 
way, the process of retargeting a test can be thought of as 
making successive hops through modules, each of which has 
an interface to its neighbors.  The objective of the retargeter is 
to convert an action (writing or reading some data payload) at 
one interface to a corresponding action at the next interface 
until it arrives at the desired endpoint.   

In the proposed formulation, we think of each device as 
having a client interface (connected to an upstream host) and 
a host interface (connected to a downstream client), with 
device logic the middle of the black box between its interfaces. 
The retargeter needs to be aware of the interconnection of the 
interfaces, but not of the logic between them (since that will 
be abstracted away into the callback procedures by the 
designer who created the logic).  The job of the retargeter is 
thus reduced to navigating a path between interfaces 
connected by callback procedures and passing the 
manipulated data payload between them. 

The objectives of both P1687.1 and P2427 fit into this very 
generalized vision, with P1687.1 representing the most 
downstream endpoint device of a chain of other devices all 
handled by P2654 at a board or system level. 

Transfer Functions 

Given a device with a client interface on one side and a 
host interface on the other side, the job of the callback 
procedure is to move data from one side to the other.  In fact, 
there is generally a callback procedure for each direction.  This 
is exactly analogous to the role of a transfer function (and a 
reverse transfer function) in system engineering.  However, 
instead of a single equation, these transfer functions may be 
implemented by blocks of code which make requests and 
provide responses, and they do so with standardized data 
structures representing the payload and other static control 
bits. 

It is clear that a transfer function is not just a simple 
combinational function describing an input to output transfer. 
For example, think of an 1149.1 compliant TAP controller as 
the module to model. It is a combination of logic functions and 
a state machine. A second example would be an IEEE 1149.7 
[18] two-pin interface. For this, a single cycle for the IJTAG 
network is translated into 4 cycles at the interface, see e.g. [7] 
for details. 

Transfer functions must also be reversible: The retargeter 
computes a pattern through the network up to the host scan 
interface. Using the transfer function, certain input sequences 
are then computed. These computed input sequences, when 
applied to the client interface (connected to the DPIC), must 
truthfully ‘replay’ the retargeted pattern at the host scan 
interface. The reverse must also hold true. 

Being able to describe existing interfaces like I2C, SPI, 
1149.1 TAP, and 1149.7’s two-pin solution are all good 
milestones for the P1687.1 working group to validate their 
proposed solution. 



 

 

Figure 9: Transfer Function 

Putting the properties of the transfer function together, 
what seems to appear is that the transformation engine from 
Figure 1 is realized by a finite-state machine, where the 
transfer function implements the machine’s transition 
function, Figure 9. Following the discussion in this section, a 
Mealy machine however, seems not sufficient to express the 
DPIC transaction from Section IV.D. Maybe a Unified 
Modeling Language (UML) state machine is what is needed. 
The P1687.1 working group has not worked through the 
details yet - this is work-in-progress. 

Nonetheless, for illustration purposes only, Figure 10 
shows an example. By no means shall this be understood as a 
syntax or semantic finalized by any of the working groups. It 
can only be understood as an illustration of the principles. One 
can imagine port-specific transfer functions; this example, 
however, defines a transfer function for the entire module. In 
fact, there are two transfer functions needed. One for deriving 
the left side module interface from the right side, and one for 
deriving the right-side module interface from the left side. 
Since the TPSP module of this example requires three cycles 
on its left side interface for each one cycle on its right-side 
interface, see [19], this example uses a ‘cycle’ to model this. 
A significant take-away is that the transfer function as used 
here creates a template for an EDA tool, how the ports relate 
to each other. Using this template, an EDA tool would never 
need to ‘copy’ data to the user’s code but could compute the 
transformation entirely on its internal data structures, thus 
improving throughput and eliminating user errors in  coding. 

Other transfer function example descriptions for the 
transfer function for this TPSP module could use the 3-state 
FSM of the TPSP instead of an unrolling into individual 
cycles. Yet, another example could be a closed-form of the 
function itself, or low-level user code, copying data from ports 
to ports. Much work needs to be done in the P1687.1 working 
group. 

To make this abstract and generalized scheme of interfaces 
and callback procedures implementing transfer functions more 
concrete, Section V will review a working implementation. 

G. Scalable Payload Mapping 

As stated before, tracking payload information through the 
various retargeting and transformation steps is essential for 
debugging and diagnosis of failures.  The transfer function 
manages the payload mapping from the scope of the 
downstream host interface to that of the upstream client 
interface as part of the transfer function.  Likewise, the reverse 
transfer function manages the payload mapping from the 
scope of the upstream client interface into the scope of the 
downstream host interface.  Thus, each callback level in the 
model resolves the payload mapping in the scope it 

understands by definition of the input and output mappings 
performed by the transfer functions.  Therefore, there is no 
longer a dependence on sharing payload mapping information 
from the leaf entities to the top level interface scope.  The 
reverse transfer function provides the unwinding of response 
payload content to the correct positions in the interface scope 
where the data is received.  This provides a scalable solution 
for payload mapping for any circuit complexity.   Diagnosis 
may then be performed at the lowest retargeted level where the 
context is known. 
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Figure 10: Example of a transfer function for a TPSP module 



 

V. A WORKING EXAMPLE OF IEEE P1687.1 CALLBACKS 

The callback is a classical computer science strategy that 
allows a “Main” program to execute a function that is defined 
in an external Library but which is not available at compilation 
time and that therefore cannot be linked through traditional 
means. This is done by placing a placeholder symbol in the 
Main executable file, which is resolved at execution during the 
“load-linking” phase. The code is therefore able to execute the 
external function and receives “back” the result, as depicted in 
Figure 11. 

 

Figure 11: Callback Scheme, from Wikipedia 

Callbacks are pretty straightforward when both the Main 
and the Library have been compiled from the same 
Programming Language but can become pretty tricky when 
this is not the case. In those cases, special caution must be put 
to correctly specify the formats of both input and output data.  

A. SystemVerilog DPI 

In EDA, a perfect example is the Verilog Direct 
Programming Interface (DPI) [11], which allows linking a 
SystemVerilog (SV) Simulator with an external Library. This 
is done by defining two “layers”: 

• A SystemVerilog (SV) layer, which defines the data 

types and functions calls from the Simulator point of 

view. Functions can either be “imported” (external 

functions executed in the simulator”) or “exported” (SV 

functions which can be called from the external code). 

This takes the form of import and export pragmas 

to be used in the SV testbench file.  

• A DPI Foreign Language Layer, which defines the 

Application Programming Interface (API) for a given 

language to specify argument passing and data type 

conversion. This takes the form of a normative svdpi.h 

header that must be provided by all simulators. 

The standard defines a DPI-C layer, allowing users to add 
their own code, or to develop a C wrapper for their code. 
Figure 12 shows the final setup: The User source code (left-
hand side of the picture) is compiled and linked against SV 
DPI libraries (not depicted) to obtain an Object Code (in the 
middle), that is then loaded at run-time by the Simulator into 
the final SV application (right-hand side of the picture).  

 

Figure 12: Inclusion of object code into a SystemVerilog application, from 

[11] 

The two layers allow easy symbolic referencing, as 
depicted in Figure 13 (based on a code example from [11]): on 
the right-hand side, the SV layer defines an import and an 

export point. This is mirrored by the C DPI layer on the left-
hand side. The import of the svdpi.h header assures the usage 
of compatible types and references.  

 

Figure 13: Symbolic referencing in SV DPI 

While the DPI Object Library itself is not directly inter-
operable, all EDA tools provide examples and compilation 
makefiles and the standard mandates specific command-line 
options for the SV compilers, making porting between 
simulators trivial.   

B. IEEE P1687.1 and IEEE P2654: Callbacks for Test 

The P1687.1 and P2654 working groups have both been 
investigating the issue of access to the test infrastructure, even 
if from different points of view: as an extension of chip-level 
DFT for the former, and as a system-level Test Access 
Management for the latter. Both came to the same 
conclusions: the high variability of solutions makes it close to 
impossible to define a “one-solution-fits-all” new language.  

Even though neither standard is yet complete, the general 
consensus is to move to a callback-based solution, Figure 11, 
on transfer functions on the stream of payload, user data and 
protocol/command information. The working groups are 
converging over the definition of the exchange format as a 
derivation of the Relocatable Vector Format first introduced 
in [20] but no decision has been made yet on the exact form 
the callbacks method will assume in the standards.   

C. MAST: A Callback-Enhanced EDA Tool 

In this section, we will show what a P1687.1 EDA tool 
would look like using the MAST tool [21] from TIMA as a 
reference. First developed for pure IEEE 1687 retargeting, 
MAST has since been used as the basis for the development of 
the RVF format and the callback model. Its P1687.1 setup, 
depicted in Figure 14, is divided in three parts: 

• A 1687 part, in the top half of the figure, where a C++ 

algorithm containing PDL 0 and 1 commands thanks to 

a “1687 CPP Player” is compiled into an object library 

• A P1687.1 part, in the lower half of the figure, where 

the callbacks implementations for the Interfaces are 

compiled against a “P1687.1 Layer”, modelled upon the 

SV DPI model 

• The MAST kernel, in the middle, which loads the 

necessary libraries depending on the system description 

in ICL. As its P1687.1 extensions are not fixed yet, we 

use our “Simplified ICL Tree” (SIT) language to 

experiment with the new features. The kernel interfaces 

with the back-end (simulation, emulation or other) and 

also produces a log file for debug purposes.  
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Figure 14: MAST P1687.1 Setup 

The SIT description of a system is a straightforward 
representation of its hierarchy. For instance, the following 
code describes a JTAG DPIC connected to a simulation 
backend. For simplicity, the 1687 network is reduced to a 
single register. 

TRANSLATOR top Simulation 

 ( 

 JTAG_TAP TAP 4 1 

 PDL PDL1 

 ( 

   REGISTER regHI 12 Bypass: "0xABC" 

  ) 

 )  

The P1687.1 layer proposes a set of headers that allow the 
description of a DPIC or Transformation engine. The most 
important parts are: 

• “BinaryVector.hpp”, which provides an unified 

representation of binary vector data, in the same way 

SystemVerilog proposes svLogicVal for DPI 

• “RVF.hpp” provides the base classes for the 

Relocatable Vector Format [21], as can be seen in the 

following code snippet:  

class RVFRequest  

{ 

 […] 

  private: 

  std::string m_CallbackId; 

  BinaryVector  m_ToSutVector; 

  void* m_interfaceData=nullptr; 

[…] 

} 

 

class RVFResponse 

{ 

 […] 

  private: 

  BinaryVector  m_ToSutVector; 

 […] 

} 

• The callback identifier is provided as a string for easier 

debug, while the interface-specific data is of type void 

for maximal portability. Depending on the interface, it 

could take any form: an address table for I2C or SPI, the 

baud speed for an UART, etc… Its interpretation is up 

to the actual callback, as recommended by the 

Delegation Design Pattern [22].  

• “TranslatorProtocol.hpp”, which provides the base 

virtual class for transformations. It defines the callback 

used to translate the packets composing an RVF stream, 

as shown in this snippet: 

 

class AccessInterfaceTranslatorProtocol 

{ 

[…] 

 

Virtual BinaryVector TransformationCallback          

   (CallbackRequest current_request) = 0; 

[…] 

};  

• “TranslatorProtocolFactory.hpp” implements a 

classical Factory Design Pattern [22] that allows MAST 

to instantiate and parametrize Protocols defined in an 

external library. It is notably used inside the SIT parser.  

By combining these elements, MAST can provide the 
P1687.1 execution flow depicted in Figure 15 for the SIT file 
mentioned previously.  

Upon startup, MAST scans its configuration directories for 
available protocol plugins, and loads them thanks to the 
factory wrapper. This same interface is then used during SIT 
parsing to construct the desired protocols, identified by their 
factory registration. In this example, the “JTAG” and 
“Simulation” protocols. The execution is then a loop of 1687 
retargeting + P1687.1 transformations.  
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Figure 15: MAST P1687.1 execution flow 



 

VI. CONCLUSIONS AND PERSPECTIVES 

In this paper we restated the need for IJTAG to support 
non-TAP device interfaces, especially for small and medium 
size designs, where I2C and SPI interfaces are common. 
Modeling such interfaces with standards IEEE 1687 requires 
bending the rules or inserting non-standard extensions. Still, 
the modeling remains difficult.  

IEEE P1687.1 promises to expand the IJTAG standard 
covering generically a wide array of interfaces, current and 
future ones. The P1687.1 working group came to realize that 
building on 1687’s foundation, simply elaborating the already 
defined use model of data register callbacks, is insufficient. 
Instead, the callback idea grew into the generalized concept of 
Interface-to-Interface transfer of information by means of 
transfer functions, defined by the owner of the (device 
interface) module. This concept is not limited to digital device 
pins, but may even include analog pins from IEEE P1687.2, or 
system interfaces from IEEE P2654. 

The EDA industry already uses such concepts. We 
described briefly how SystemVerilog simulators are expanded 
using the Verilog Direct Programming Interface. We also 
elaborated an example implementation in MAST, further 
underlining the applicability of the concepts currently being 
developed by the IEEE P1687.1 working group. 
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