

Exploring and Comparing IEEE P1687.1 and

IEEE 1687 Modeling of Non-TAP Interfaces

Hans-Martin von Staudt

Dialog Semiconductor

Kirchheim unter Teck, Germany

hansmartin.vonstaudt@diasemi.com

Bradford Van Treuren
VT Enterprises Consulting Services

Lambertville, NJ, USA

bradvt59@gmail.com

Jeff Rearick

Advanced Micro Devices

Fort Collins, CO 80528 USA

Jeff.Rearick@amd.com

Michele Portolan

Univ Grenoble Alpes

CNRS, Grenoble INP1, TIMA

38000 Grenoble, France.

Michele.portolan@grenoble-

inp.fr

Martin Keim

Siemens Digital

Industries Software

Wilsonville, OR 97070 USA

Martin_Keim@Mentor.com

Abstract— The industry is moving forward with non-TAP,

chip-level interfaces driving IEEE 1687-2014 networks. Recent

literature not only describes such interfaces, like I2C and IEEE

1149.7 variants, but also demonstrates that such interfaces to

IEEE 1687 are already proven in silicon. Common to those

implementations is the need for “private” extensions of IEEE 1687

to make it support non-TAP interfaces. The goal of IEEE P1687.1

is to directly support non-TAP interfaces. In this work, we

summarize the thought progression from IEEE 1687’s data

register callbacks to IEEE P1687.1’s transfer function, which

allows alignment with IEEE P2654, and possibly IEEE P1687.2.

Keywords—IEEE 1687, IEEE P1687.1, IEEE P1687.2, IEEE

P2654, IJTAG, SJTAG, STAM, I2C, SPI, Transfer Function

I. INTRODUCTION

The IEEE 1687-2014 standard [1], also known as IJTAG,
enjoys a very fast adoption rate in the semiconductor industry.
This speed may be due to IJTAG builds on other established
standards like IEEE 1500-2005 [2] and IEEE 1149.1-2001 [3],
allowing a risk-free adoption of the software side of IJTAG,
while keeping the earlier hardware implementation as a
backup. Hardware modeled according to these standards are,
by construction, compliant with IJTAG. This is in particular
true for the 1149.1 compliant TAP controller, which is one of
the most common access points to the inside of the design. The
IJTAG standard includes specific solutions for the description
and easy integration of the TAP controller as the interface
between the device IOs and the IJTAG network it hosts.

On the other hand, the IJTAG standard does not provide
the same level of descriptive power or integration ease-of-use
for other established device IO (industry) standards, like Inter-
Integrated Circuit (I2C) [4] or Serial Peripheral Interface (SPI),
see e.g., [5]. This lack of support by the standard has not
stopped users of IJTAG expanding the reach of their IJTAG-
based implementations. Recent papers [6]-[9] describe
numerous IJTAG-based solutions and implementations in
silicon of non-TAP interfaces, including I2C and IEEE 1149.7-
like two-pin serial interfaces driving IJTAG networks.

Typically, these solutions bend or expand the IJTAG
standard to support the user’s need. IEEE P1687.1 [10] aims
at filling this gap in IJTAG by standardizing a method to
generically describe device IO interfaces, TAP and non-TAP
alike.

The remainder of this paper is structured as follows. The
next section introduces the main concepts of IEEE P1687.1
and draws some comparisons to 1687. We will be looking at
how device IOs and device interfaces are describable,
following along some of the evolution of thinking of the IEEE
P1687.1 working group. Section III illustrates in more detail
options and difficulties of an I2C modeling in IJTAG. Section
IV develops the rudimentary non-TAP concepts of IJTAG into
the generic solution needed to describe a multitude of device
interfaces. This generalization is captured by Interface-to-
Interface Transfer Functions, abstracting away the entire body
of the non-TAP interface module into software. Section V
illustrates two implementations examples, one of which is the
well-known Verilog Direct Programming Interface (DPI)
[11], which could serve as a template for IEEE P1687.1.
Thereafter, we summarize the paper and provide conclusions.

II. INTRODUCING IEEE P1687.1

We must state that the IEEE P1687.1 standard is a work-
in-progress. No syntax or semantics has been defined. Also,
the concepts we are describing here and in the following are
currently being discussed and are not final. Nonetheless, the
understanding of the problem and solution space at the core of
P1687.1 focuses more and more on what is described in this
paper.

As mentioned in the introduction, P1687.1 shall enable a
user of 1687 to choose a device IO interface that is not an
1149.1 compliant TAP controller. The beforementioned I2C is
one example. P1687.1, just as 1687, will be a descriptive
standard, not a prescriptive one. This means it will not contain
prescriptions how one or the other existing device IO interface
needs to be modeled. Instead, a generic description must be
found that enables users to describe a wide variety of device
IO interfaces, including the currently most common interfaces.

The latter could be provided in the P1687.1 document as
examples in the non-normative section of this future standard.

Figure 1: General depiction of the IEEE P1687.1 task

The general problem P1687.1 solves is shown in Figure 1.
It is assumed that the device contains a 1687 compliant set of
instruments, connected to a 1687 compliant network, which is
hosted by an internal, 1149.1 compliant, TAP controller. On
the other end of the device, there is the non-TAP Device Pin
Interface & Controller (DPIC). Both sides are bridged by a
“transformation engine” module. This module translates in
both directions between the device’s IO data and control
protocol and the data and control protocol operating the TAP
controller. Valid variations of this picture may have the TAP
controller being part of the transformation engine, i.e. the
transformation engine module directly hosts the IJTAG
network. The task of P1687.1 is finding a way to describe this
transformation engine module.

A. IEEE 1687 Callbacks and Access Links

Early on the IEEE P1687.1 working group saw that many
of the current interfaces use or can use a (portal) register that
serves as the physical data transfer method, see Figure 2. If a
DPIC could write data to and read data from this portal
register, then the transformation engine only needs to interface
between this register and the TAP controller. This was
described in an embedded tutorial at ETS 2019 [6]. An
evolution step forward was outlined in the introduction
sections of [7], presented at ITC 2020.

Figure 2: Solution through Portal Registers

Initially, the thinking was guided by the idea to expand the
IJTAG concept of callback and access link. An IJTAG
callback is a reference to an iProc, written in PDL (level 0 or
1) and attached to a data register. This iProc is called whenever
the IJTAG retargeter encounters this data register, hence there
can be an iProc that is called when there is a read operation
from this data register, and another iProc when writing to the
data register is needed. The 1687 standard sets no limits on
these iProcs. For example, they can read and write to any other

ICL register or port, can be cascaded, iMerged etc. In the most
general case, these data register callbacks are nearly
impossible to implement in an EDA tool. P1687.1 plans not
use such data register callbacks.

1687 provides two types of access links. One, fully
developed, for integrating the TAP controller, and a ‘generic’
one. The latter is hardly developed in 1687, and essentially
unusable. Still, the idea of an access link is sound and was
considered expandable for the needs of P1687.1. Through this
mechanism, one can attach a protocol to an ICL instance,
without actually describing much of the body of the ICL
module. Figure 3 (top) depicts a simple access link example,
as provided in the 1687 standard, with Figure 3 (middle) being
the matching ICL code.

Figure 3: IEEE 1687 AccessLink Example

One observation how 1687 defines the access link is that
is no longer matches the (RTL) design implementation. Note
that in Figure 3 (top) the TDI, TMS, TCK, and TDO ports are
all parts of the TAP (AccessLink) ICL ‘instance’. In reality,
there is no such instance, as the TAP module instance in the
design has its own pins with its own pin names, connected to
the device IO with its own port names, as shown in Figure 3
(bottom). This description discrepancy between ICL and the
design is usually not a problem but might become an obstacle
when one needs to concatenate multiple such transformation
engines.

B. IEEE P2654 and IEEE P1687.2 Crossovers

This concatenation may be an essential aspect of IEEE
P2654 [12], and possibly P1687.2 [13][14], hence the access
link description should be restricted to the design module
boundaries.

The task in P2654 is to bring, for example, multiple
devices into one description model at the system level, so that
(IJTAG) patterns can be generated and applied across devices
and across a variety of device IO interfaces.

1687 serial

Network
Instruments

ScanIn
CaptureEn

ShiftEn
UpdateEn

Select
TCK

Reset
ScanOut

Device Pin

Interface

& Controller

Transformation

Engine

What is in the

box?

ScanIn

TMS

Select
TCK
TRST

ScanOut(or)

This could be

I2C, SPI, MDIO, …

Functional

circuitry

1687 serial

Network
Instruments

ScanIn
CaptureEn

ShiftEn
UpdateEn

Select
TCK

Reset
ScanOut

Device Pin

Interface

& Controller

Functional

circuitry

Functional Registers

B
it

-b
a

n
g

e
r

.

.

1687 portal

register

func register 1

func register 2

func register n

Instruments

This could be

I2C, SPI, MDIO, …

TOP

I1

(Instrument)
TAP

(AccessLink)

TDI

TMS

TCK
TDO

Module TOP {

Instance I1 of MyInstrument { }

AccessLink TAP of STD_1149_1_2001 {

BSDLEntity TOP ;

my_ijtag_en { // instruction name

ScanInterface { I1.scan_client; }

}

}

}

TOP

I1

(Instrument)
TAP

(RTL/ICL)

TDI

TMS

TCK
TDO

P1687.2 is an IJTAG derivative that addresses analog ports
and operate analog instruments. For example, P1687.2 might
need to translate a voltage level at the input to another voltage
level at the output of the transformation engine. In P1687.2 it
is possible that analog properties undergo multiple
transformations between the analog instrument and the device
IO for example, see Figure 4

Figure 4: Concatenation of transformation modules

It becomes clear that all three standards look at different
aspects of the very same problem: There’s a design entity that
transforms input data to output data and vice versa but is too
complex to be described in any reasonable extension of ICL.
On the other side, it is very clear what this transformation
needs to do. One can easily sketch out how one set of data
needs be transformed into the other set of data (in either
direction), i.e. one can easily write an algorithm for this.

C. Transfer Function

We finally arrived at the understanding that “all” we need
to define is a description method for this algorithm in a way
that is useful for all three standards.

It seems that only two algorithms are needed, one for
taking the data at all the inputs of the module and compute the
output data, and one for taking the data at the all the outputs
and compute the input data. In engineering such a method is
referred to as a Transfer Function, a mathematical concept. A
transfer function models the output response of an electronic
component for a range of possible input stimuli. Filters are
typical implementations to transfer functions.

In the simplest case the transfer function for P1687.1 is
strictly a combinational function from n binary-valued module
inputs to m binary-valued module outputs. It is attached to an
ICL instance by means of an AccessLink-like construct and
executed through the software engineering method of
callbacks by the EDA software. More on this in Section IV
and Section V.

III. I2C MODELING WITH IEEE 1687

The I²C interface is the epitome of the low-level digital
host interface for small and medium chips, attached to
embedded microcontrollers. It was presented by Philips in
1982 and soon became popular in the industry.

A. I²C and SPI Basics: Addressed Access Schemes

Like other such interfaces, e.g. the Serial Peripheral
Interface (SPI) communication happens bit-serially on very
few wires. I²C uses two wires: one for clock and one for
bidirectional data. The original specification only defines
transactions composed from two elements as shown in Figure
5a and Figure 5b:

1) An address byte selecting one of many slave devices and

determining the data direction of the second element.

2) One or more data bytes, either read or write direction

Around the bytes there are few more clever details
(start/stop conditions, negative acknowledge, etc.) which all
contributed to the popularity of the interface but in the context
of this paper only the data transfer model is the focus.

Of course, accessing always all bits in a device is not
overly flexible. Most devices therefore implement an internal
address scheme. The first data byte as per the above definition
becomes a device internal register address (not to be confused
with the first element, which was a device address on the bus),
followed by the payload data. A generic write access hence
consists of three bytes: the device address, the register address,
followed by the write payload data. See Figure 5c.

Unfortunately, the data direction cannot change within a
transaction. Remember: the first byte contains the direction bit
together with the device address. Hence, a read access
following this scheme needs to consist of two transactions as
shown in Figure 5d.

1) Write the register address

2) Read the payload data

The fundamental organization of addressed registers fits
very well with the data model of microprocessors that access
memory locations on a map. As no surprise there are variants
of the protocol using 2 bytes for addressing. Also, there is no
hard need to restrict the payload data to 8-bit chunks.

In contrast to I²C, SPI does not operate a bidirectional data
line but features dedicated input and output data pins. Also, no
bus addressing happens. Instead, a chip select signal chooses
the slave to respond to the master. However, the underlying
data model of the SPI may be just the same: Addressed register
locations, each 8-bit wide.

DataReg1

DAC B
Y Analog

2

DataReg2

ADCE
Analog

1
DCA F

Z

TOP

Optional Repeats

S
Master drives SDA

Slave drives SDA

Slave Addr (7-bit) W A Write Data (8-bit) A Write Data (8-bit) A P

S Slave Addr (7-bit) R A Read Data (8-bit) A Read Data (8-bit) N P W

R

Write Access

Read Access

S

P

Start Condition

Stop Condition

A

N

Acknowledge

Negative Ack

S Slave Addr (7-bit) W A Register Address A Payload Write Data A P

S Slave Addr (7-bit) R A Payload Read Data N PS Slave Addr (7-bit) W A Register Address A P

(a)

(b)

(c)

(d)

Figure 5: I2C transactions: Raw (a), (b). Addressed (c), (d)

Once a chip features such a host interface for the various

registers controlling its functions (write) and presenting

acquired data (read), it is quite natural to use it as Test Access

Port (TAP) too. Hence there is no appetite for such small to

medium size chips to implement another TAP like the one

defined by 1149.1.

The concept of accessing a bit by the register address and the

position within the register is sufficiently different to the

1149.1 idea of locating a bit by its position on a scan chain.

Handling long and reconfigurable scan chains is fine in a test-

only environment where patterns are pre-computed offline.

An application style access to test registers is simpler and

more attractive.

Also, it is more economical compared to the scan approach of

1149.1. A boundary scan register or the Test Data Register

(TDR) as per the 1687 standard requires an extra flip-flop per

control bit. The overhead of I²C and other addressed schemes

is the de-serializer. It grows from a base line determined by

the width of the data word only logarithmically with the

number of bits. Let n be the number of bits and w the width

of the data word (=8 for I²C and a set SPI configuration) then

the number of required flip-flops is as follows.

• Scan based flop count: n + n = 2n

• Addressed flop count: n + log2(n/w) + w

One might say this is no longer relevant in the age of single
digit nanometer technologies, but this is just one end of the
spectrum. Mixed-signal Big-A/little-d devices, which only
feature 5V logic (= 0.6µm) for cost reasons, are ubiquitous. A
very interesting example was described in [15]. It showed a
single pin implementation with clock and data on the same
line, again together with an addressed access scheme.

It is fair to say that for small and medium chips there will
always be a too high barrier for an 1149.1 TAP and scan chains
to be accepted. Nevertheless, the design and test engineers of
these chips equally want to benefit from the principles of
IJTAG.

B. Approaches to Use I²C and IJTAG Together?

Even though IEEE 1687 primarily describes scan-based
access networks attached to an 1149.1 TAP it offers a few
options and pointers to alternatives.

 AccessLink

The will to support other external interfaces can be seen
from the AccessLink instruction in ICL. It specifies the TAP
which is connected to the scan-based access network.
However, only one single type STD_1149_1_2001 is defined.
IEEE 1687 simply points to the “user community” to define
other interfaces. This is the purpose of P1687.1.

Hardware Portal Solutions

One of the challenges with any I²C implementation is that
the access network cannot necessarily be described in a cycle
accurate manner, as is the case with scan-based interfaces.
There are three popular implementations:

a) Fully asynchronous operation driven by the I²C clock,

which after deserialization also forwards the payload

data to/from the register.

b) Asynchronous deserialization of the I²C signals. The

complete transaction is then synchronized with an

internal clock, which also forwards the payload data

to/from the register.

c) Oversampling of the I²C signals with a chip-internal

clock, which processes the complete transfer in a

synchronous system.

Only option a) represents cycle accurate behavior,
controlled by the I²C clock, for which a state machine could
be described like the 1149.1 TAP. The other two
implementations run on an internal clock.

Figure 6: Portal Registers connecting I²C to IJTAG scan chain of “islands”

In [16] and [17] a direct mapping of an IJTAG scan access
network to a portal register is described. As shown in Figure
6, the scan network is made up of so called “test and trim
islands”, each featuring a segment insertion bit (SIB) and a
uniform TDR. The portal IJTAG TAP controller services a
range of device addresses and maps them to the islands. An
I²C write transaction is translated by the portal engine to a
sequence of transactions of the IJTAG scan network, opening
the respective SIB and writing/reading the payload data.

Figure 7: Island architecture with addressed register array

The interesting element of this solution is that it exploits

an option which was already foreseen by the 1687 standard:

Addressable DataRegisters. As shown in Figure 7 the address

for selecting the DataRegister comes from a ScanRegister.

Also, the data source and the destination of the DataRegister

is a ScanRegister. Hence it replicates the mechanism of the I²C

interface itself: A serializer/deserializer followed by parallel

read/write access. Compatibility is achieved by selecting the

DataRegister 8 bits wide and allocating 16 addresses (4-bit

TDR

SI

SO

READ

SIB TDR

SIB

SIB TDR

WRITE

I
2
C

Core

IJTAG

TAP

Controller

I
2
C

I/F

Instrument

1 Hot

SO

SI
S

SIB

A
D

D
R

R/W

RST

Capture

Update

D
A

T
A

Scan TDR

U

DataRegister

SI

SO

addressing) for each island. The IJTAG network is not

advertised to the outside world (no ICL required).

Callback Registers

Another alternative access mechanism foreseen in the

1687 standard is DataRegisters with an associated “callback”.

For these registers no description of an access network is

required. The standard states: “The callback register exists

outside the logical connectivity described in ICL and instead

relies on prewritten PDL procedures”. This mechanism avoids

all complications introduced by chip-internal clocking (see

discussion on I²C implementations above).

The authors of [9] have exploited this concept. An iWrite
or an iRead command to the DataRegister in the device is
triggering the callback, which creates the bitstream of the
transaction at the chip pins and hence can be mapped directly
to the ATE.

The drawback, which is usually associated with the use of
PDL is that it describes the access mechanism only in one
direction, the direction of retargeting. Implementers and tool
writers may find it necessary to know the exact mapping of
bits between original and retargeted PDL, e.g. for updating the
original PDL if changes are done to the PDL and test pattern
on the ATE.

Another problem is the handling of registers and bitfields
longer than 8 bits, which is the limit for an I²C atomic access.
Imagine a 12-bit DAC whose controlling bitfield unavoidably
stretches 2 I²C registers. If only the LSB needs changing, will
all 12 bits be written (2 I²C transactions) or just what is
changing (1 transaction)? Or, what happens if a carry-over
from one register to the other happens such that both need
changing? Which one is written first?

These examples show some of the limits of the existing
callback definition in the 1687 standard.

IV. MODELING NON-TAP INTERFACE WITH

IEEE P1687.1

As mentioned in Section II above, the essential
contribution planned for P1687.1 is to formalize the
mechanism to mate a 1687 network to a device interface other
than an 1149.1 TAP. Also as noted above, the primary device
interface candidates like I2C and SPI are often utilized as the
conduit to exchange data with a bank of addressable data
registers. The alternate mechanism of using callback routines
to communicate with such registers became the inspiration for
the technical solution currently favored by the P1687.1
Working Group.

A. Expanding on the Callback DataRegister Notion

A Callback DataRegister is said to be disembodied since
its hardware connectivity is not described in ICL. Rather, its
definition includes one or two callback procedures,
WriteCallback and ReadCallback, which the retargeter
summarily invokes when it sees this register referenced in the
PDL test that is being retargeted. This approach is useful for
handling cases with complex connectivity which might prove
too challenging for a retargeter to solve, or for cases where the
IP provider wishes to keep the details of the connectivity and
network hidden from the user. Both of those reasons apply to
the situation at hand: retargeting through the circuitry between
the edge of the 1687 network and a non-TAP device interface.

B. Viewing DPIC as a Callback DataRegister

Figure 8 shows an abstraction of the region of interest for
P1687.1: the circuitry between the (non-TAP) device interface
pins and the edge of the 1687 network. That edge consists of
two types of interfaces: a ScanInterface (defined in 1687) and
a DataInterface (new in P1687.1 but built entirely from
original 1687 elements).

Though it is conceivable that the cloud of circuitry
between the DPIC pins and those interfaces could be described
in ICL, writing that ICL might be a challenging or undesirable
task. The DPIC may contain clock generators, data FIFOs,
retimers, and other structures that might confound a retargeter.
The DPIC could also contain proprietary features that the
vendor may not wish to share. Most importantly, though, none
of that high-effort ICL is even necessary: all the details can be
abstracted away by simply viewing the entire DPIC in the
same way as a Callback DataRegister. Specifically, rather
than describing the hardware, the ICL for the DPIC module
could simply point to callback procedures which would be
invoked when the retargeter encountered any of the interfaces.

This trick allows the DPIC creator to capture the behavior
of the circuitry rather than try to convey its details to a
retargeter, just as is done for the 1687 Callback DataRegister.
There are, of course, many details of the syntax and semantics
involved in documenting a callback for a DPIC; those
constitute much of the work by the P1687.1 team and are
beyond the scope of this paper. Suffice it to say that there will
be a mechanism (ideally AccessLink) for the retargeter to
recognize when and how to invoke a DPIC callback.

1687 network
DPIC circuitry to

be abstracted

S
c

a
n

In
te

rf
a

ce
D

a
ta

In
te

rf
a

c
e

D
P

IC
 p

in
s

Figure 8: DPIC connection to 1687 network

C. Viewing a callback procedure as a macro expansion

Taking a similarly abstract view of the operation of a
callback procedure during retargeting leads to the simple
conclusion: the contents of a callback can be thought of as a
macro (i.e. a pre-defined snippet of PDL code) which is
expanded in place where the original PDL test made a
reference to the object whose ICL points to a callback
procedure (e.g. a DataRegister in IEEE 1687, or a DPIC in
P1687.1).

The author of the callback procedure is effectively
stepping in to tell the retargeter exactly what to do, whether
that means selecting a particular data path from several
choices, setting up a specific set of values to enable
communication, or even manipulating the data through

complicated circuitry (e.g. going through an adder by setting
the other operand to zero, calculating parity bits to augment
the payload, dividing the data into multiple words to be sent
sequentially, etc.). The callback relieves the retargeter from
the burden of figuring out how to move data. Of course, this
means that the author accepts that burden, but in the case of
modeling the DPIC behavior, the author will likely be the
designer of the DPIC and thus well qualified.

D. Beyond PDL: Specifying Transactions at the DPIC

The original 1687 standard dictates that callbacks be
written in PDL, which makes perfect sense given this view of
a callback as a macro to be expanded in-line with the source
PDL being retargeted. However, in the broader context being
embraced by P1687.1, and for extension into P2654, this
restriction to PDL becomes not just awkward, but limiting:
PDL enables just primitive bit-banging of pins, whereas most
DPICs come with meaningful protocols that are often codified
in high-level application programming interface (API) calls.

The logical step to resolve this limitation is to remove the
restriction of writing DPIC callback procedures in only PDL.
Introducing language flexibility at the callback level will allow
non-TAP devices to be exercised by the software which is
native to the embedded system in which the devices are used.
For example, the result from a DPIC callback for an I2C
interface might look like a sequence of “write_i2c(w_data)”
and “read_i2c(r_data)” statements, which is far more useful
than a (much longer) sequence of “iWrite SCK 0b0; iApply;
iWrite SDA 0b0; iApply; iWrite SCK 0b1; iApply; …”
commands.

As simple as that sounds, however, there are many details
to manage: language compatibility across devices from
different vendors in the same system, standard data types,
neutral data exchange formats, consistent language and
compiler versions, and even low-level details like endianness
and byte ordering. The final section of this paper will show a
working example which resolves those issues.

E. Mapping Payload Information

Independent of the language details, a callback procedure
has two types of content: static operations which sensitize data
paths and/or walk-through state machines, and symbolic
operations which manipulate the data payload itself. Tracking
that payload information through the various retargeting and
transformation steps is essential for debugging and diagnosis
of failures, so special steps may need to be taken to facilitate
these tasks.

The most direct method to explicitly track the data payload
is to insert comments into the retargeted test whenever a piece
of data has been manipulated. In the context of a DataRegister
callback done entirely in PDL, this can take the form of a PDL
iNote command that will be persevered in the retargeted
output. For a DPIC callback, particularly if it is written in a
different language than PDL as described above, some
equivalent mechanism will need to be provided (e.g. special
comment annotations, extra procedure calls which can serve
as hooks for debugging, etc.).

F. Generalizing: Interface-to-Interface Transfer Functions

In light of the previous two abstractions (using pre-coded
macros to represent circuit behavior instead of using a
hardware connectivity description, and flexibly using
programming languages to implement callback procedures to

replace retargeting), it became clear to the P1687.1 and P2654
Working Groups that there could be a general alignment
across the different scopes of those two standardization
efforts. This alignment (which we intend to guide the
development of both standards) is built around two key pillars:
interfaces and transfer functions.

Interfaces

Though it wasn’t originally conceived of in 1687 in this
way, the process of retargeting a test can be thought of as
making successive hops through modules, each of which has
an interface to its neighbors. The objective of the retargeter is
to convert an action (writing or reading some data payload) at
one interface to a corresponding action at the next interface
until it arrives at the desired endpoint.

In the proposed formulation, we think of each device as
having a client interface (connected to an upstream host) and
a host interface (connected to a downstream client), with
device logic the middle of the black box between its interfaces.
The retargeter needs to be aware of the interconnection of the
interfaces, but not of the logic between them (since that will
be abstracted away into the callback procedures by the
designer who created the logic). The job of the retargeter is
thus reduced to navigating a path between interfaces
connected by callback procedures and passing the
manipulated data payload between them.

The objectives of both P1687.1 and P2427 fit into this very
generalized vision, with P1687.1 representing the most
downstream endpoint device of a chain of other devices all
handled by P2654 at a board or system level.

Transfer Functions

Given a device with a client interface on one side and a
host interface on the other side, the job of the callback
procedure is to move data from one side to the other. In fact,
there is generally a callback procedure for each direction. This
is exactly analogous to the role of a transfer function (and a
reverse transfer function) in system engineering. However,
instead of a single equation, these transfer functions may be
implemented by blocks of code which make requests and
provide responses, and they do so with standardized data
structures representing the payload and other static control
bits.

It is clear that a transfer function is not just a simple
combinational function describing an input to output transfer.
For example, think of an 1149.1 compliant TAP controller as
the module to model. It is a combination of logic functions and
a state machine. A second example would be an IEEE 1149.7
[18] two-pin interface. For this, a single cycle for the IJTAG
network is translated into 4 cycles at the interface, see e.g. [7]
for details.

Transfer functions must also be reversible: The retargeter
computes a pattern through the network up to the host scan
interface. Using the transfer function, certain input sequences
are then computed. These computed input sequences, when
applied to the client interface (connected to the DPIC), must
truthfully ‘replay’ the retargeted pattern at the host scan
interface. The reverse must also hold true.

Being able to describe existing interfaces like I2C, SPI,
1149.1 TAP, and 1149.7’s two-pin solution are all good
milestones for the P1687.1 working group to validate their
proposed solution.

Figure 9: Transfer Function

Putting the properties of the transfer function together,
what seems to appear is that the transformation engine from
Figure 1 is realized by a finite-state machine, where the
transfer function implements the machine’s transition
function, Figure 9. Following the discussion in this section, a
Mealy machine however, seems not sufficient to express the
DPIC transaction from Section IV.D. Maybe a Unified
Modeling Language (UML) state machine is what is needed.
The P1687.1 working group has not worked through the
details yet - this is work-in-progress.

Nonetheless, for illustration purposes only, Figure 10
shows an example. By no means shall this be understood as a
syntax or semantic finalized by any of the working groups. It
can only be understood as an illustration of the principles. One
can imagine port-specific transfer functions; this example,
however, defines a transfer function for the entire module. In
fact, there are two transfer functions needed. One for deriving
the left side module interface from the right side, and one for
deriving the right-side module interface from the left side.
Since the TPSP module of this example requires three cycles
on its left side interface for each one cycle on its right-side
interface, see [19], this example uses a ‘cycle’ to model this.
A significant take-away is that the transfer function as used
here creates a template for an EDA tool, how the ports relate
to each other. Using this template, an EDA tool would never
need to ‘copy’ data to the user’s code but could compute the
transformation entirely on its internal data structures, thus
improving throughput and eliminating user errors in coding.

Other transfer function example descriptions for the
transfer function for this TPSP module could use the 3-state
FSM of the TPSP instead of an unrolling into individual
cycles. Yet, another example could be a closed-form of the
function itself, or low-level user code, copying data from ports
to ports. Much work needs to be done in the P1687.1 working
group.

To make this abstract and generalized scheme of interfaces
and callback procedures implementing transfer functions more
concrete, Section V will review a working implementation.

G. Scalable Payload Mapping

As stated before, tracking payload information through the
various retargeting and transformation steps is essential for
debugging and diagnosis of failures. The transfer function
manages the payload mapping from the scope of the
downstream host interface to that of the upstream client
interface as part of the transfer function. Likewise, the reverse
transfer function manages the payload mapping from the
scope of the upstream client interface into the scope of the
downstream host interface. Thus, each callback level in the
model resolves the payload mapping in the scope it

understands by definition of the input and output mappings
performed by the transfer functions. Therefore, there is no
longer a dependence on sharing payload mapping information
from the leaf entities to the top level interface scope. The
reverse transfer function provides the unwinding of response
payload content to the correct positions in the interface scope
where the data is received. This provides a scalable solution
for payload mapping for any circuit complexity. Diagnosis
may then be performed at the lowest retargeted level where the
context is known.

1687 serial

Network
Instruments

ScanIn
CaptureEn

ShiftEn
UpdateEn

Select
TCK

Reset
ScanOut

Device Pin

Interface

& Controller

This could be

I2C, SPI, MDIO, …

Transfer

Function

T

 T-1

ScanIn

TMS

Select
TCK
TRST

ScanOut(or)

Functional

circuitry

Figure 10: Example of a transfer function for a TPSP module

V. A WORKING EXAMPLE OF IEEE P1687.1 CALLBACKS

The callback is a classical computer science strategy that
allows a “Main” program to execute a function that is defined
in an external Library but which is not available at compilation
time and that therefore cannot be linked through traditional
means. This is done by placing a placeholder symbol in the
Main executable file, which is resolved at execution during the
“load-linking” phase. The code is therefore able to execute the
external function and receives “back” the result, as depicted in
Figure 11.

Figure 11: Callback Scheme, from Wikipedia

Callbacks are pretty straightforward when both the Main
and the Library have been compiled from the same
Programming Language but can become pretty tricky when
this is not the case. In those cases, special caution must be put
to correctly specify the formats of both input and output data.

A. SystemVerilog DPI

In EDA, a perfect example is the Verilog Direct
Programming Interface (DPI) [11], which allows linking a
SystemVerilog (SV) Simulator with an external Library. This
is done by defining two “layers”:

• A SystemVerilog (SV) layer, which defines the data

types and functions calls from the Simulator point of

view. Functions can either be “imported” (external

functions executed in the simulator”) or “exported” (SV

functions which can be called from the external code).

This takes the form of import and export pragmas

to be used in the SV testbench file.

• A DPI Foreign Language Layer, which defines the

Application Programming Interface (API) for a given

language to specify argument passing and data type

conversion. This takes the form of a normative svdpi.h

header that must be provided by all simulators.

The standard defines a DPI-C layer, allowing users to add
their own code, or to develop a C wrapper for their code.
Figure 12 shows the final setup: The User source code (left-
hand side of the picture) is compiled and linked against SV
DPI libraries (not depicted) to obtain an Object Code (in the
middle), that is then loaded at run-time by the Simulator into
the final SV application (right-hand side of the picture).

Figure 12: Inclusion of object code into a SystemVerilog application, from

[11]

The two layers allow easy symbolic referencing, as
depicted in Figure 13 (based on a code example from [11]): on
the right-hand side, the SV layer defines an import and an

export point. This is mirrored by the C DPI layer on the left-
hand side. The import of the svdpi.h header assures the usage
of compatible types and references.

Figure 13: Symbolic referencing in SV DPI

While the DPI Object Library itself is not directly inter-
operable, all EDA tools provide examples and compilation
makefiles and the standard mandates specific command-line
options for the SV compilers, making porting between
simulators trivial.

B. IEEE P1687.1 and IEEE P2654: Callbacks for Test

The P1687.1 and P2654 working groups have both been
investigating the issue of access to the test infrastructure, even
if from different points of view: as an extension of chip-level
DFT for the former, and as a system-level Test Access
Management for the latter. Both came to the same
conclusions: the high variability of solutions makes it close to
impossible to define a “one-solution-fits-all” new language.

Even though neither standard is yet complete, the general
consensus is to move to a callback-based solution, Figure 11,
on transfer functions on the stream of payload, user data and
protocol/command information. The working groups are
converging over the definition of the exchange format as a
derivation of the Relocatable Vector Format first introduced
in [20] but no decision has been made yet on the exact form
the callbacks method will assume in the standards.

C. MAST: A Callback-Enhanced EDA Tool

In this section, we will show what a P1687.1 EDA tool
would look like using the MAST tool [21] from TIMA as a
reference. First developed for pure IEEE 1687 retargeting,
MAST has since been used as the basis for the development of
the RVF format and the callback model. Its P1687.1 setup,
depicted in Figure 14, is divided in three parts:

• A 1687 part, in the top half of the figure, where a C++

algorithm containing PDL 0 and 1 commands thanks to

a “1687 CPP Player” is compiled into an object library

• A P1687.1 part, in the lower half of the figure, where

the callbacks implementations for the Interfaces are

compiled against a “P1687.1 Layer”, modelled upon the

SV DPI model

• The MAST kernel, in the middle, which loads the

necessary libraries depending on the system description

in ICL. As its P1687.1 extensions are not fixed yet, we

use our “Simplified ICL Tree” (SIT) language to

experiment with the new features. The kernel interfaces

with the back-end (simulation, emulation or other) and

also produces a log file for debug purposes.

Application Program

Main Program Callback Function

Software Library

Library Function

call call

specifies

#include "svdpi.h"

[…]

extern void

exported_sv_func(int, int*);

void f1(const int i1, const

pair *i2, svLogicVecVal* o3)

{

[…]

}

export "DPI-C" function

exported_sv_func;

import "DPI-C" function

void f1(input int i1, pair i2,

output logic [63:0] o3);

SystemVerilog Simulator

DPI Library

Figure 14: MAST P1687.1 Setup

The SIT description of a system is a straightforward
representation of its hierarchy. For instance, the following
code describes a JTAG DPIC connected to a simulation
backend. For simplicity, the 1687 network is reduced to a
single register.

TRANSLATOR top Simulation

 (

 JTAG_TAP TAP 4 1

 PDL PDL1

 (

 REGISTER regHI 12 Bypass: "0xABC"

)

)

The P1687.1 layer proposes a set of headers that allow the
description of a DPIC or Transformation engine. The most
important parts are:

• “BinaryVector.hpp”, which provides an unified

representation of binary vector data, in the same way

SystemVerilog proposes svLogicVal for DPI

• “RVF.hpp” provides the base classes for the

Relocatable Vector Format [21], as can be seen in the

following code snippet:

class RVFRequest

{

 […]

 private:

 std::string m_CallbackId;

 BinaryVector m_ToSutVector;

 void* m_interfaceData=nullptr;

[…]

}

class RVFResponse

{

 […]

 private:

 BinaryVector m_ToSutVector;

 […]

}

• The callback identifier is provided as a string for easier

debug, while the interface-specific data is of type void

for maximal portability. Depending on the interface, it

could take any form: an address table for I2C or SPI, the

baud speed for an UART, etc… Its interpretation is up

to the actual callback, as recommended by the

Delegation Design Pattern [22].

• “TranslatorProtocol.hpp”, which provides the base

virtual class for transformations. It defines the callback

used to translate the packets composing an RVF stream,

as shown in this snippet:

class AccessInterfaceTranslatorProtocol

{

[…]

Virtual BinaryVector TransformationCallback

 (CallbackRequest current_request) = 0;

[…]

};

• “TranslatorProtocolFactory.hpp” implements a

classical Factory Design Pattern [22] that allows MAST

to instantiate and parametrize Protocols defined in an

external library. It is notably used inside the SIT parser.

By combining these elements, MAST can provide the
P1687.1 execution flow depicted in Figure 15 for the SIT file
mentioned previously.

Upon startup, MAST scans its configuration directories for
available protocol plugins, and loads them thanks to the
factory wrapper. This same interface is then used during SIT
parsing to construct the desired protocols, identified by their
factory registration. In this example, the “JTAG” and
“Simulation” protocols. The execution is then a loop of 1687
retargeting + P1687.1 transformations.

MAST

PDL1.so

Interface.so

ICL/SIT

PDL1.cpp

Log File

Backend

Interface.cpp

P1687.1 CPP Layer

1687 CPP Layer

Figure 15: MAST P1687.1 execution flow

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we restated the need for IJTAG to support
non-TAP device interfaces, especially for small and medium
size designs, where I2C and SPI interfaces are common.
Modeling such interfaces with standards IEEE 1687 requires
bending the rules or inserting non-standard extensions. Still,
the modeling remains difficult.

IEEE P1687.1 promises to expand the IJTAG standard
covering generically a wide array of interfaces, current and
future ones. The P1687.1 working group came to realize that
building on 1687’s foundation, simply elaborating the already
defined use model of data register callbacks, is insufficient.
Instead, the callback idea grew into the generalized concept of
Interface-to-Interface transfer of information by means of
transfer functions, defined by the owner of the (device
interface) module. This concept is not limited to digital device
pins, but may even include analog pins from IEEE P1687.2, or
system interfaces from IEEE P2654.

The EDA industry already uses such concepts. We
described briefly how SystemVerilog simulators are expanded
using the Verilog Direct Programming Interface. We also
elaborated an example implementation in MAST, further
underlining the applicability of the concepts currently being
developed by the IEEE P1687.1 working group.

REFERENCES

[1] IEEE Std 1687-2014, “IEEE Standard for Access and Control of
Instrumentation Embedded within a Semiconductor Device”, IEEE,
USA, 2014

[2] IEEE std 1500-2005, IEEE Standard for Embedded Core Test, IEEE,
USA, 2005.

[3] IEEE Std 1149.1-2001, “IEEE Standard Test Access Port and
Boundary-Scan Architecture”, IEEE, USA, 2001.

[4] UM10204 I2C-bus specification and user manual,
https://www.nxp.com/docs/en/user-guide/UM10204.pdf, Rev. 6 — 4
April 2014.

[5] Piyu Dhaker, “Introduction to SPI Interface”, Analog Dialogue 52-09,
https://www.analog.com/media/en/analog-dialogue/volume-
52/number-3/introduction-to-spi-interface.pdf, September 2018

[6] M. Portolan, J. Rearick, M. Keim, “Linking Chip, Board, and System
Test via Standards”, 2020 IEEE European Test Symposium (ETS),
May 2020.

[7] Modeling Novel Non-IJTAG IEEE 1687.1 like Architectures, M.
Laisne et.al, ITC 2020

[8] IJTAG Through a Two-Pin Chip Interface, Jonathan Gaudet et. al., ITC
2020

[9] H. M. v. Staudt, M. A. Benhebibi, J. Rearick and M. Laisne, "Industrial
Application of IJTAG Standards to the Test of Big-A/little-d devices,"
2020 IEEE International Test Conference (ITC), 2020, pp. 1-10, doi:
10.1109/ITC44778.2020.9325267.

[10] IEEE P1687.1 – Standard for the Application of Interfaces and
Controllers to Access 1687 IJTAG Networks Embedded Within
Semiconductor Devices,
https://standards.ieee.org/project/1687_1.html

[11] IEEE std 1800-2012, “SystemVerilog -Unified Hardware Design,
Specification, and Verification Language”, IEEE, USA, 2012.

[12] IEEE P2654 – Standard for System Test Access Management (STAM)
to Enable Use of Sub-System Test Capabilities at Higher Architectural
Levels, https://standards.ieee.org/project/2654.html

[13] IEEE P1687.2 – Standard for Describing Analog Test Access and
Control, https://standards.ieee.org/project/1687_2.html

[14] P. Sarson and J. Rearick, "Use models for extending IEEE 1687 to
analog test," 2017 IEEE International Test Conference (ITC), Fort
Worth, TX, 2017, pp. 1-8.

[15] M. Laisne, H. M. von Staudt, S. Bhalerao and M. Eason, "Single-pin
test control for Big A, little D devices," 2017 IEEE International Test

Conference (ITC), Fort Worth, TX, 2017, pp. 1-10.

[16] H. M. von Staudt and A. Spyronasios, "Using IJTAG digital islands in
analogue circuits to perform trim and test functions," Poster at IEEE
International Test Conference, Paris, 2015, pp. 1-5.

[17] H. M. von Staudt and A. Spyronasios, " Integration of IJTAG Test and
Trim Islands in I²C Legacy Designs," 2015 IEEE 20th International
Mixed-Signals Testing Workshop (IMSTW), Anaheim, 2015

[18] IEEE 1149.7 - IEEE Standard for Reduced-Pin and Enhanced-
Functionality Test Access Port and Boundary-Scan Architecture,
https://standards.ieee.org/standard/1149_7-2009.html

[19] Manu Baby;Bernd Büttner;Piet Engelke;Ulrike Pfannkuchen;Reinhard
Meier;Jonathan Gaudet;J-F Côté;Givargis Danialy;Martin Keim;Lori
Schramm, “IJTAG Through a Two-Pin Chip Interface”, 2020 IEEE
International Test Conference (ITC), 2020, pp. 1-5, doi:
10.1109/ITC44778.2020.9325232.

[20] M. Portolan, “The Automated Test Flow, the Present and the Future”,
IEEE Transactions on Computer-Aided Design (TCAD), DOI:
10.1109/TCAD.2019.2961328, December 2019

[21] M. Portolan, "A Novel Test Generation and Application Flow for
Functional Access to IEEE 1687 instruments", Proc European Test
Symp. (ETS), pp. 1-6, 2016

[22] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison-Wesley,
1995 ISBN 978-0-201-63361-0.

